If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+16k+61=6
We move all terms to the left:
k^2+16k+61-(6)=0
We add all the numbers together, and all the variables
k^2+16k+55=0
a = 1; b = 16; c = +55;
Δ = b2-4ac
Δ = 162-4·1·55
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-6}{2*1}=\frac{-22}{2} =-11 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+6}{2*1}=\frac{-10}{2} =-5 $
| w+13=-28 | | x+2x+1,200=18,000 | | −4(3x+1)+x−3=15 | | 4(a+6)=92 | | 7y−3y+y=20 | | 2x+x=16,800 | | 560=-10(-6x+22) | | x(6-3)+12=+20 | | -3(p-87)=30 | | 3(x-8)=2(x+1) | | 4x+7+3x+9+80=180 | | 5(x-6)=145 | | 5x-2.3=6.6 | | x(6-3)+12=x=20 | | 2x+1=5x-5= | | 8(g+22)=80 | | (60-2x)(40-2x)(x)=7500 | | 15-3x+8=6x-37-7x | | 3x-112=5x+100 | | 6z-9=34 | | 5(s-84)=55 | | 7500=(60-2x)(40-2x)(x) | | 3(4-n)=6+3n | | 4(u-7)-8u=-24 | | 56x²-22x+2=0 | | 0=(60-2x)(40-2x)(x)+7500 | | 6.5x-23=-3.5x+37 | | 13x-2=11x+16 | | 4(2y+-2)=-40 | | 2(x-3)^2=32 | | 7d(d-2)=5(d+2) | | 18+5.50h=13+6.75h |